
 

 

 

 

 

 

Location Searching and Road Path Planning for Autonomous Vehicles 

With Improved Intersection Considerations 

 

 

by 

Yushi Guan 

 

Supervisor: Professor Angela Schoellig 

April 2018 

 

  



i 
 

 

 

 

 

Abstract 

Autonomous vehicles are becoming more popular and advanced these days. In order to reach 
Level 3 (Conditional Automation) of autonomous driving, a vehicle must plan its path and 
monitor road conditions. High level road path planning is an essential component for any 
autonomous vehicle to plan its route from one location to another. In this report, we proposed 
a new location searching algorithm based on preprocessed on-disk hash table, which we found 
to have better performance compared to traditional SQL query methods. In addition, we 
demonstrated the difficulties to assign street intersections with any cost when representing 
road networks with traditional graphs. We proposed a new representation, and an associated 
Road Path Planning with Improved Intersections Considerations Algorithm that take into 
account the cost incurred when crossing through and turning at intersections. Compared to 
other methods that attempt to address vehicle turning cost, our representation does not 
require preprocessing of the map database. Using this new representation, the turning cost can 
be dynamically allocated, and a turn-by-turn instruction that is easy to execute for an 
autonomous vehicle can be generated. Evaluated using Greater Toronto Area road network 
data, the algorithm reduces the number of turns in the proposed path by half, without 
significantly increasing the total distance of the path. 

  



ii 
 

 

 

 

 

 

 

 

 

 

Acknowledgement 

This thesis project is conducted as part of the aUToronto Autodrive Project. I would like to 
thank Professor Angela Schoellig for supervising my thesis. I would also like to thank my 
teammates for their support through this challenging project. 

 

  



iii 
 

Contents 
1. Introduction .......................................................................................................................................... 1 

2. Literature Review .................................................................................................................................. 3 

2.1 Survey of Database Search Techniques ........................................................................................ 3 

2.1.1 B+ Tree: ................................................................................................................................. 3 

2.1.2 Hash Table: ............................................................................................................................ 4 

2.2 Survey of Ambiguous Search Algorithm ....................................................................................... 5 

2.2.1 The Google Approach............................................................................................................ 5 

2.2.2 The open source project spellmaster approach ................................................................... 5 

2.3 Survey of Path Planning Techniques ............................................................................................. 6 

2.3.1 Graph Representations: ........................................................................................................ 6 

2.3.2 Path Planning Algorithms: ..................................................................................................... 7 

3. Methods and Implementation ............................................................................................................ 13 

3.1 Location Searching Software Framework Implementation ........................................................ 13 

3.1.1 SQL Database implementation ........................................................................................... 13 

3.1.2 On-disk Hash Table Implementation .................................................................................. 13 

3.2 Ambiguous Search Algorithm Implementation .......................................................................... 22 

3.2.1 Street Name Cleaning ......................................................................................................... 22 

3.2.2 Street Name Bank ............................................................................................................... 22 

3.2.3 Standard Ambiguous Search Transformations ................................................................... 22 

3.2.4         Street Name Special Ambiguous Search Transformations ................................................. 23 

3.2.5         Double Variation ................................................................................................................. 24 

3.3. Path Planning with Improved Intersection Considerations Implementation ............................. 25 

3.3.1         Disadvantages of Traditional Road Graph Network Representations ................................ 25 

3.3.2 Objectives ............................................................................................................................ 28 

3.3.3 Graph Representation ......................................................................................................... 29 

3.3.4 Algorithm ............................................................................................................................ 30 

3.3.5 Software Optimizations ...................................................................................................... 45 

3.3.6 Heuristic Optimization ........................................................................................................ 47 

4 Result .................................................................................................................................................. 48 

4.1         Location Searching Performance Evaluation ............................................................................. 48 

4.2         Path Planning with Improved Intersection Considerations Performance Evaluation ............... 50 

4.2.1         Comparison of Path Planned .............................................................................................. 50 



iv 
 

4.2.2         Safe Driving Consideration: Path Planned with Right Turn onto Road Network ................ 51 

4.2.3         Turn-by-Turn Instruction .................................................................................................... 52 

4.2.3         Algorithm Speed and Benefit Comparison on Real Road Networks ................................... 52 

5 Summary ............................................................................................................................................. 55 

References .................................................................................................................................................. 56 

 

  



v 
 

List of Figures 

Figure 1. Complete Linear Dual Graph and Restricted Linear Dual Graph Representation........................ 12 

Figure 2. Structure of 2-Level Hash Table for O(1) search of Street Intersections ..................................... 15 

Figure 3. Structure of Final Hash Table in a Network with 1 Intersection and 3 Streets Intersecting ....... 18 

Figure 4. Different Actual Shortest Path on Road Network Based on Vehicle Direction ........................... 25 

Figure 5. Road Graph Network with Street Intersection as Vertices and Streets as Weighted Edges ....... 26 

Figure 6. Road Network With Turn Restrictions ......................................................................................... 27 

Figure 7. Road Graph Representation with Weighted Undirected Graph [15] .......................................... 29 

Figure 8. Road Graph Representation with Weighted Symmetric Directed Graph [17] ............................ 29 

Figure 9. Polar Angle Between Edges in Graph ........................................................................................... 37 

Figure 10. Example Turn Classification on a Real Road Network ............................................................... 38 

Figure 11. Weighted Undirected Graph and Weighted Symmetric Directed Graph .................................. 40 

Figure 12. Hash Table Structure, Turn Restriction Based on Edges ............................................................ 41 

Figure 13. Hash Table Structure, Turn Restriction Based on Ordered Vertex Set Dual .............................. 42 

Figure 14. Hash Table Structure, One Way Road Restriction ..................................................................... 43 

Figure 15. Intersection Location Search Time for 100 Random Intersections ............................................ 48 

Figure 16. Path Planned from Start to End using Dijkstra’s Algorithm ....................................................... 50 

Figure 17. Path Planned from Start to End using Road Path using Road Graph with Intersection 

Considerations ............................................................................................................................................ 50 

Figure 18. Vehicle forced to turn right onto the road network, and forced to turn right into the 

destination .................................................................................................................................................. 51 

Figure 19. Turn-by-Turn Instruction Auto Generated from Algorithm ....................................................... 52 

Figure 20. Comparison of Run Time and Properties of Proposed Shortest Path for Different Algorithms 53 

 

List of Tables 

Table 1. Example Representation of Feature Point in North America map database ................................ 13 

Table 2. Street Object Data Structure in North America map database .................................................... 14 

Table 3. Data Entries in Individual Hash Tables and Merged Hash Table ................................................... 17 

Table 4. Examples of Results Using Standard Transformations on Input “HWY ONE” ............................... 23 

Table 5. Examples of Results Using Street Name Special Transformations on Input “HWY ONE” ............. 24 

Table 6. Pseudo Code Comparison Between Dijkstra's and Intersections Considerations Algorithm ....... 31 

Table 7. Turn Type Along with Example Criteria and Cost .......................................................................... 38 

Table 8. Comparison with Dijkstra’s Algorithm on Cost, Planned Path and Turn-by-Turn Instruction ...... 40 

Table 9. 2D Array Represent of Distance .................................................................................................... 45 

Table 10. 2D Array Representation of Parent, including Turn Types .......................................................... 46 

 

 



1 
 

1. Introduction 
 

The aUToronto Autodrive Team is participating in the AutoDrive Challenge organized by SAE 

International [1]. The goal is to build a Level 3 (Conditional Automation) autonomous vehicle 

over the course of three years [2]. As defined by SAE International, Level 3 Conditional 

Automation requires the automated driving system to take care of all aspects of the driving task 

in a dynamic environment under normal operating conditions [2]. High-level road path planning 

is an essential component to enable autonomous vehicles to operate in real road networks by 

itself. 

To motivate the design and implementation of a road path planning framework, SAE 

International organized a Mapping Challenge as part of the AutoDrive Challenge that spans over 

three years [3]. In year one, participating teams should demonstrate location searching and 

displaying ability in North America map database. Types of location include Point of Interest 

(POI) Name and ID, Street Addresses, GPS Coordinates and Street Intersections. In year two, 

teams should showcase road path planning algorithm that provides a path from one location on 

the map to another. In year three, teams will enable the communication between the mapping 

framework and the vehicle, providing turn-by-turn instructions for the vehicle. 

For efficient location search in a map database, a lot of algorithms and data structures has been 

proposed. Popular methods and techniques include: SQL database, where storage and query of 

information have been highly standardized and work across many systems [4]; Distributed 

Systems and Cloud Computing, where location search queries will be simultaneously handled 

by different systems to speed up the process [5]. However, for the SAE AutoDrive Challenge, 

the vehicle is not connected to the internet during its operation [3]. The vehicle needs to 

consult map information stored on the computers in the vehicle, and quickly give location 

information without the use of Cloud Computing or powerful servers located somewhere else. 

SQL databases, using its underlying B+ Tree structure, do not scale well when there is a huge 

number of data [4]. To speed up the location search process, we propose a hash table data 



2 
 

structure that enables information search in O(1) [6]. Details of preprocessing and performance 

analysis will be presented in this report. 

We observed that road network path planning may not generate an optimal path for 

autonomous vehicles when traditional graph representations are used. Traditional graph 

representations that involve vertices with unique identifiers and weighted edges have a lot of 

applications in computer science and robotics research. For example, graphs can be used to 

represent networks of communication and flow of computation in computer science [7]. 

Robotics navigation performance can also be enhanced with the adaptation of topological 

graph and path planning [8]. However, these traditional graph representations that do not 

associate weights with vertices have a lot of problems generalizing to road networks. A lot of 

applications naively treat street intersections as graph vertices and streets as weighted edges 

[9]. However, autonomous vehicles incur a lot of cost at street intersections. These costs 

include time spent waiting for traffic signal change, potential hazards and risks associated with 

crossing and turning at intersections. In addition, traditional graph algorithms usually generate 

solutions that are purely based on an ordering of the vertices. For example, topological sort 

generates an ordering of the vertices such that for every direct edge from vertex A to vertex B, 

A comes before B in the ordering [10]. Dijkstra’s and A* algorithm produce the shortest path 

based on the ordering of the vertices [11] [12]. When combining these algorithms with road 

graph that treats street intersections as vertices, the results got are not executable for 

autonomous vehicles. The vehicles will be informed with the order of intersections, but it does 

not have complete information to navigate from one intersection to another. In this report, we 

propose a different representation that provides turn-by-turn instruction for vehicles to 

operate on a real road network, and dynamically penalize the use of intersections and turns to 

ensure safer operation of the vehicle.  



3 
 

2. Literature Review 
 

2.1 Survey of Database Search Techniques 
 

The North America map data provided by SAE AutoDrive Challenge contains about 109 feature 

points [3]. In year one, the team is required to demonstrate software framework that can 

search for a geographical location using Street Intersection Names, Street Address, GPS 

Coordinate, or Point of Interest ID and Name. The program should also be able to zoom in and 

zoom out on the map after the location has been found. Due to the large amount of data, 

constant or near constant search time is required to fulfill the requirements. In the following 

section, an overview is provided for two constant and near constant search complexity data 

structures: B+ Tree and Hash Table [4] [5]. 

 

2.1.1 B+ Tree: 
 

B+ tree is heavily used by SQL databases to store data on disk persistently [4]. Each node in B+ 

tree may have a number of children, up to its branching factor b. The primary difference 

between a B+ tree and a B Tree is that each node in a B+ tree only contains a key instead of a 

key-value pair. Values in the B+ tree are only located at the bottom of the tree where the 

leaves of the tree are found. On each level, each node is also linked to its adjacent nodes, in 

addition to its parent and child. These particular properties make B+ tree highly efficient for 

information retrieval in a block-oriented storage context such as hard drives. Therefore, it has 

been widely utilized in file system and SQL database designs. A very large branching factor b 

can be utilized to reduce the height of a B+ Tree, reducing the time required for querying when 

there is a very large amount of data such as the North America map data. The time complexity 

of retrieving a record is 𝑂(logb 𝑛), where b is the branching factor and n is the total number of 

data points. The time complexity of retrieving a range of records, which is required when 

querying for street intersection locations, is 𝑂(logb 𝑛 + 𝑘), where k is the average number of 

street segment objects in the database under the same street name [4]. For the Mapping 



4 
 

Challenge in particular, PostgreSQL has been a standardized SQL database that works 

seamlessly with the open source GIS mapping applications. The team can benefit from the ease 

of maintenance and relatively good performance by using a PostgreSQL application. 

 

2.1.2 Hash Table: 
 

Hash table is a data structure that maps keys to values [6]. A hash table involves a hash 

function, an array of buckets that stores the key-value pairs, and a collision resolution 

mechanism. A hash function is a function that quickly computes an integer hash value given a 

key. During storage, the bucket with the index of the integer hash value will be used to store 

the key-value pair. During a search, the bucket will be instead consulted to retrieve the value 

associated with the key. The objective of a hash function is to minimize the number of 

potential collisions, i.e. the potential of two different keys having the same hash value, this is 

not possible if the size of the array of buckets is small compared to the total number of key-

value terms. Therefore, hash tables usually need to maintain a relatively low load factor 

(number of key-value pair to the size of bucket array ratio), through dynamical resizing: expand 

the size of the array of buckets in case of more key-value pairs being added. In the case of hash 

value collisions, colliding key-value pairs can be stored in a linked list with its head attached to 

one of the buckets in the array. This particular method is named chaining. Another mechanism 

is open addressing, which helps to reduce storage space but performs poorly at a high load 

factor. The biggest advantage of hash table is an constant O(1) lookup time when there are 

minimal key collisions. This is often achievable in practice through the choice of a reasonable 

hash function and optimal load factor. When searching for information among the entire North 

America database, this constant lookup time can be much faster than SQL database which has 

logarithmic lookup time. Although traditionally hash table is usually stored in computer 

memories, on-disk versions of the data structure exist such as the Python Shelve module [6]. If 

an on-disk hash table is used, the performance of a query is reduced by the ratio of memory 

speed and disk speed, but the time required for loading the hash table is essentially eliminated. 

 



5 
 

2.2 Survey of Ambiguous Search Algorithm 
 

Modern search engines have been very successful at detecting spelling errors. For example, 

suggesting the word ‘spelling’ given an input ‘speling’. However, this success is backed by 

powerful servers and exhaustive learnings through tokens online [13]. In the following section, 

an overview of Google’s approach is provided. We will also take an overview of the idea behind 

a lightweight open source project spellmaster [14]. 

 

2.2.1 The Google Approach 
 

Google has developed an ene-to-end system spellchecking system that does not require any 

manually annotated training data [13]. Google uses a large (> 1 billion) sample of web pages to 

build an error model and an n-gram language model. Using a small secondary news texts with 

artificially inserted misspellings, a classifier is trained to detect potential misspellings in the n-

gram language model, creating a reference set of high-confidence correct language model. 

 

2.2.2 The open source project spellmaster approach 
 

The open source project spellmaster uses a reference dictionary that contains correctly spelled 

words, and assume no correctly spelled words exist beyond the words included in the 

dictionary [14]. When a word suggestion is given, a set of its variants are produced based on 

common spelling errors, which includes: insertion of an extra letter, deletion of a letter, 

substitution of a letter and swap of letters. 

  



6 
 

2.3 Survey of Path Planning Techniques 
 

In the following section, an overview of typical graph representations, and graph 

representations for road networks will be provided. In addition, a survey of some existing path 

planning algorithms will also be given. 

 

2.3.1 Graph Representations: 
 

Definition (weighted) undirected graph. An (weighted) undirected graph is an ordered pair 

𝐺 =  (𝑉, 𝐸) comprising a set of Vertices 𝑉 and a set of Edges 𝐸 [15]. A graph contains 𝑁 

vertices, and 𝑀 edges. Each edge 𝐸𝑚,𝑚∈[0,𝑀) is associated with an unordered two element subset 

of Vertices (𝑣1, 𝑣2). In a weighted graph, each edge 𝑒𝑚,𝑚∈[0,𝑀) is also associated with a weight 

𝑊(𝑒𝑚,𝑚∈[0,𝑀)), which typically represents the cost of getting to one vertex in the subset from 

another vertex in the subset. 

Definition (weighted) directed graph. A (weighted) directed graph is an ordered pair 𝐺 =

 (𝑉, 𝐸). Each edge 𝑒𝑚,𝑚∈[0,𝑀) is associated with an ordered two element subset of Vertices 

(𝑣1, 𝑣2) [16]. In a weighted directed graph, each edge 𝑒𝑚,𝑚∈[0,𝑀) is also associated with a weight 

𝑊(𝑒𝑚,𝑚∈[0,𝑀)), which typically represents the cost of getting to the second vertex in the subset 

from the first vertex in the subset. 

Definition (weighted) symmetric directed graph: A (weighted) symmetric directed graph is an 

ordered pair 𝐺 =  (𝑉, 𝐸), a particular case of (weighted) directed graph [17]. Each edge is 

associated with an ordered two element subset of Vertices (𝑣1, 𝑣2). For each edge 𝑒𝑚,𝑚∈[0,𝑀), 

there must exist a complementary edge �̅��̅�,�̅�∈[0,𝑀) that is associated with a corresponding two 

element subset of Vertices (𝑣2, 𝑣1). In a weighted symmetric directed graph, each edge is 

associated with a weight 𝑊(𝑒𝑚,𝑚∈[0,𝑀)), where 𝑊(𝑒𝑚,𝑚∈[0,𝑀)) =  𝑊(𝑒�̅�,�̅�∈[0,𝑀)). 

  



7 
 

Definition weighted simple undirected road network graph: A weighted simple undirected 

road network graph is an ordered pair 𝐺 =  (𝑉, 𝐸) comprising a set of Vertices 𝑉 and a set of 

Edges 𝐸. Each vertex 𝑣𝑛,𝑛∈[0,𝑁) represents a street intersection, or the end of a road. Each edge 

𝑒𝑚,𝑚∈[0,𝑀) represents a street segment between two vertices in a road network. Each edge is 

associated with a weight 𝑊(𝑒𝑚,𝑚∈[0,𝑀)), which typically represents the cost of getting to one 

vertex from another. 

Definition weighted symmetric directed graph: A weighted symmetric directed graph is an 

ordered pair 𝐺 =  (𝑉, 𝐸) comprising a set of Vertices 𝑉 and a set of Edges 𝐸. Each vertex 

𝑣𝑛,𝑛∈[0,𝑁) represents a street intersection, or the end of a road. Each edge 𝑒𝑚,𝑚∈[0,𝑀) represents a 

street segment from one vertex to another (𝑣1, 𝑣2), and may have a complementary edge 

�̅��̅�,�̅�∈[0,𝑀) which represents the complementary street segment between the vertex pair (𝑣2, 𝑣1). 

 

2.3.2 Path Planning Algorithms: 
 

A lot of path planning algorithms and their modified versions exist up-to-date. These 

algorithms typically vary in their time and space complexity during query time and 

preprocessing, as well as the complexity of implementation. In this section, an overview of the 

algorithms is provided. 

Here, we present the typical definition of a path based on the ordering of the vertices: 

Definition path: A path in a graph 𝐺 =  (𝑉, 𝐸) is a sequences of vertices 𝑃 = < 𝑣1, 𝑣2, … , 𝑣𝑘 >, 

where 𝑣𝑖 ∈ 𝑉, such that 𝑣𝑖  is adjacent to 𝑣𝑖+1 for 1 ≤ 𝑖 < 𝑘 ≤ 𝑁. The path 𝑃 is an ordered array 

of size 𝑘 [18]. In a undirected graph, 𝑣𝑖  is adjacent to 𝑣𝑖+1 if and only if there exists an edge 

𝑒𝑚,𝑚∈[0,𝑀) that is associated with the unordered 2-element set (𝑣𝑖 , 𝑣𝑖+1). In a directed graph, 𝑣𝑖  

is adjacent to 𝑣𝑖+1 if and only if there exists an edge 𝑒𝑚,𝑚∈[0,𝑀) that is associated with the 

ordered 2-element set (𝑣𝑖, 𝑣𝑖+1). 

 

 



8 
 

Definition of shortest path based on an ordering of the vertices is: 

Definition shortest path: A shortest path from a source vertex 𝑺 to a destination vertex 𝑫 in a 

graph 𝐺 =  (𝑉, 𝐸) is a sequences of vertices 𝑃 = < 𝑆, 𝑣2, 𝑣3, … 𝑣𝑘−1, 𝐷 >, where 𝑣𝑖 ∈ 𝑉, such 

that 𝑣𝑖  is adjacent to 𝑣𝑖+1 for 2 ≤ 𝑖 < 𝑘 − 1 ≤ 𝑁, 𝑆 is adjacent to 𝑣2, and 𝑣𝑘−1 is adjacent to 𝐷 

[18]. Adjacent has the same definition as in definition 6. Given a weighted function 𝑊: (𝑉, 𝑉) →

𝑅. A shortest path 𝑃 is one that minimizes the cost function ∑ 𝑊(𝑣𝑖 , 𝑣𝑖+1)𝑘
𝑖=1 , where 𝑆 =  𝑣1, 

𝐷 =  𝑣𝑘  and 𝑣𝑖  is adjacent to 𝑣𝑖+1. 

 

2.3.2.1  Dijkstra’s Algorithm: 
 

Dijkstra’s algorithm can generate a shortest path tree from a single source vertex S [11]. In the 

shortest path tree, the shortest path from S to any other vertex 𝑣𝑛,𝑛∈[0,𝑁) is represented by the 

branch of the tree for which 𝑣𝑛,𝑛∈[0,𝑁) is lying on.  

To generate the shortest path tree, the algorithm performs the following steps: 

Initialization [11]: mark the distance of all vertices to be infinity, and their status as 

unvisited (other possible states are visited and fully explored), set the source S as the 

current vertex. 

Iterative Steps [11]: 

1. Explore each adjacent vertex of the current vertex and mark each adjacent vertex as 

visited, unless the adjacent vertex has been marked as fully explored. Calculate the 

tentative distance of each adjacent vertex from source S via the current vertex, i.e. if 

the distance from source vertex S to the current vertex is X, and the distance from the 

current vertex to the adjacent vertex is Y, the adjacent vertex’s tentative distance is X 

+ Y. If the adjacent vertex has been previously marked with a distance greater than X + 

Y, then change its distance to X + Y, and set the current vertex as the parent of the 

adjacent vertex. 

 



9 
 

2. Mark the current vertex as fully explored and then select a visited vertex with the 

smallest tentative distance. Mark the selected vertex as the current vertex and repeat 

step 1. The shortest path tree is generated once there is no visited vertex available. 

 

Using min-priority queues, the worst case run-time of Dijkstra’s Algorithm is 𝑂(𝑀 + 𝑁 log 𝑁), 

where 𝑀 is the number of edges, and 𝑁 is the number of vertices.  

In addition, Dijkstra’s Algorithm also allows early termination if there is a specific destination 

vertex 𝐷 ∈ 𝑉. The algorithm will terminate once the destination D has been marked as fully 

explored. Dijkstra’s Algorithm guarantees optimality (the discovery of the shortest path if 

there is a path from source S to destination D exists). 

 

2.3.2.2  Bidirectional Dijkstra’s Algorithm: 
 

A Bidirectional Dijkstra’s Algorithm explores the shortest path by starting two Dijkstra’s 

searches in parallel: one from the source vertex S and another one from the destination vertex 

D [19]. The algorithm terminates when the two searches found a mutual fully explored vertex 

M. The full path can be reconstructed by combining the path from S to the M and D to M. 

This parallel search technique greatly reduces run-time because the number of edges and 

vertices that are being searched will grow exponentially as the frontier of the search expands in 

Dijkstra’s Algorithm [19]. When early termination is used in Dijkstra’s Algorithm and 

Bidirectional Dijkstra’s Algorithm, the worst-case time complexity 𝑂(𝑀 + 𝑁 log 𝑁) is not 

applicable if the distance from S to D is much smaller than the largest distance between two 

arbitrary vertices in the graph. The average runtime can be represented by  𝑂(𝑏𝑑) where b is 

the average branching factor of the graph, and d is the number of levels (the length of the path) 

that need to be explored in the graph. In a road network that is made up of 4-way intersections 

(crossroads), the average branching factor m will be 4, and d will represent the number of 

intersections between S and D. With the adaptation of the Bidirectional Dijkstra’s Algorithm, 

the run-time will be reduced to  𝑂(2𝑏𝑑/2). The multiplier 2 comes from the 2 instances of 

parallel search, where the divisor 2 in the exponent of m is the result of a reduced level of 



10 
 

searches when the searches are started from both source and destination. In a road network 

mainly made up of 4-way intersections, a source and destination that is about 10 intersections 

apart may see a run-time reduction on the order of 105 when the bidirectional search is used 

[19].  

 

2.3.2.3  A* Algorithm: 
 

A* algorithm works similarly as the Dijkstra’s Algorithm, in which the graph is being explored 

starting from the source vertex S. However, in A* search algorithm, the vertex with the 

smallest total estimated cost to reach the goal is selected to be explored first [12]. This gives 

A* algorithm a greedy nature: vertices that appear to be on the shortest path to the 

destination will be explored first. A* Algorithm is usually faster than Dijkstra’s Algorithm in 

practical situations, but its worst-case time complexity remains the same. 

 

The estimated total cost is the sum of the current tentative distance plus a heuristic function 

𝐻: (𝑉, 𝑉) → 𝑅. 𝐻(𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝐷) estimates the distance between the current vertex and the 

destination. A* algorithm will guarantee the optimality of the solution if the 

heuristic 𝐻(𝑣𝑐𝑢𝑟𝑟𝑒𝑛𝑡, 𝐷) selected is admissible, meaning the heuristic will never overestimate 

the actual cost of the path. In road network graph analysis, straight line distance between the 

current vertex and destination is a handy admissible heuristic. The distance can be easily 

calculated using geographical locations (latitude and longitude) of the vertices. A bidirectional 

A* Algorithm also exists, working similarly to the Bidirectional Dijkstra’s Algorithm. 

 



11 
 

2.3.2.4  Contract Hierarchy Algorithm  
 

The Contract Hierarchy Algorithm enables query of a path on the order of 𝑂(𝐻 log𝐻 𝑁), where 

H is the number of hierarchies it has constructed after preprocessing of the map [9]. The 

preprocessing is also very fast as it is strictly linear: (N+M). It produces a guaranteed optimal 

path by avoiding arbitrary division of the map. With a query time approximately on the order of 

𝑂(𝐻 log𝐻 𝑁), it can query a USA map with 107 nodes using about 103 𝑂(1) operations.  

Briefly, the Contract Hierarchy algorithm has two parts:  

1. Hierarchy Construction: A higher layer highway abstraction 𝐸𝑖 contains an edge   

(𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸𝑖−1 if it belongs to some canonical shortest path 𝑃 = <

𝑠, … , 𝑣𝑖 , 𝑣𝑖+1, … 𝑡 > for any 𝑠,𝑡 ∈ 𝐸𝑖−1 and 𝑣𝑖 ∉ 𝑁𝐻(𝑠), 𝑣𝑖+1 ∉ 𝑁𝐻(𝑡) where 𝑁𝐻(𝑠) is the 

set of 𝐻 nearest neighbors of 𝑠.  

 

2. Query: Use bi-directional Dijkstra’s search on each abstraction layer and combine the 

result  

 

Intuitively, the algorithm prohibits slow edges (local roads) from being added to a higher 

abstraction layer because it cannot be on the shortest path for two nodes (s and t) sufficiently 

far away from it. 

 

 

 

 

 

 

 

 

 

 



12 
 

2.3.2.5  Linear Dual Graph for Turn Cost Representation 
 

 

Figure 1. Complete Linear Dual Graph and Restricted Linear Dual Graph Representation 

Modeling Costs of Turns in Route Planning is an algorithm proposed by researchers at Technical 

University Vienna [20]. The idea of this algorithm is for each intersection in the road network, 

create two additional vertices for each edge (street) connected to the intersection. Therefore, 

by properly connecting the vertices with directed edges and without creating loops, a 

Restricted Linear Dual Graph of the original graph can be created. Turn cost can be associated 

with these newly created edges. Using Dijkstra’s Algorithm on the Restricted LDG, a path that is 

optimized for reducing the number of turns can be created. 

The main drawback of this algorithm is extensive preprocessing of the map data is required. In 

following sections, we will propose an algorithm penalizes turns on the fly without 

preprocessing required.  

  



13 
 

3. Methods and Implementation 
 

3.1 Location Searching Software Framework Implementation 
 

In order to complete the requirements for year one Mapping Challenge. I and my teammates 

have explored several methods in parallel. Our most successful implementations have been 

using SQL Database and on-disk Hash Table. The implementation details will be presented 

below. 

 

3.1.1 SQL Database implementation 
 

Location searching using SQL Database has been mostly implemented by my teammate Zane 

Huang. The software framework used to search for the locations is PostgreSQL 10.3 for Ubuntu 

16.04. During preprocessing, the extension ‘postgis’ in PostgreSQL 10.3 is used to load map 

information into the database [21]. Standard SQL queries have been used to search for Street 

Addresses, Point of Interest ID and Name, as well as Street Intersections. 

 

3.1.2 On-disk Hash Table Implementation 
 

Among all of the year one search types, street intersection search has been the most difficult 

one. All other search types usually have a direct key-value pair. The following table summarizes 

how the geographical location is associated with other information [22]. 

 

Object ID 
Point of 

Interest ID 

Point of Interest 

Name 

Street 

Number 

Street 

Name 

Geographical 

Location 

4598 32495 ABC Restaurant 78 John St. (-123.345, 45.56) 

8945 13244 CDE Hospital 34 King RD (-67.892, 56.34) 
 

Table 1. Example Representation of Feature Point in North America map database 

 



14 
 

As shown in Table 1, the feature point data is nicely structured in the database. Information can 

be easily stored in a relational database such as SQL and later retrieved using SQL queries. 

Although storing the information in an on-disk Hash Table will be more efficient at search time, 

there is a lot more preprocessing required, and the software framework will be less systematic 

than an SQL implementation. Therefore, the on-disk Hash Table is used to tackle street 

intersection search, where significant theoretical improvement exists. In the rest of this section, 

detailed preprocessing and implementation steps are presented. 

 

3.1.2.1  Street Object Data Structure in Map Database Provided by SAE International 
 

In order to correctly identify street intersections, the structure of how street information is 

originally presented in the database needs to be studied [22]. 

 

Object ID Street Name Street Section ID Street Coordinates 

101 YONGE ST 5647 [(-89.987, 46.238), (-89.988, 46.239)] 

105 YONGE ST 3985 
[(-89.234, 45.345), (-89.234, 45.236), … 

(-89.235, 45.359)] 

… … … … 

215 YONGE ST 2394 [(-89.678, 47.543), (-89.578, 47.545)] 

783 COLLEGE ST 5849 [(-89.235, 45.359), (-89.230, 45.359)] 
 

Table 2. Street Object Data Structure in North America map database 

 

Deducing street intersection locations directly from database entries are non-trivial tasks. 

Unlike finding an entry related to a single feature point, street intersection search involves 

querying entries related to both streets and compare their Street Coordinates to find if the 

streets intersect with each other. In Table 2., the bolded street coordinates match for “YONGE 

ST” and “COLLEGE ST”, as a result, it can be deduced that “YONGE ST” and “COLLEGE ST” is 

intersecting at (-89.235, 45.359). 



15 
 

3.1.2.2  Design of Hash Table for O(1) Time Complexity Street Intersection Search 
 

The final Hash Table that allows O(1) street intersection search has a two-level hash table 

design. In the level-1 hash table, the keys are street names, and the values are level-2 hash 

tables. In the level-2 hash table, the keys are the name of the streets. The values are the 

geographical coordinate that represents the intersecting location of the level-1 hash table key 

street and the level-2 hash table key street. A graphical representation of the final data 

structure is shown below: 

 

 
Figure 2. Structure of 2-Level Hash Table for O(1) search of Street Intersections 

 

Given a search term, for example, “YONGE ST and COLLEGE ST”, “YONGE ST” will be used as the 

first key, to retrieve the level-2 hash table that contains all the streets that intersect with it. 

Using “COLLEGE ST” as the second key, the intersection of “YONGE ST” and “COLLEGE ST” will 

be retrieved, which is (-89.235, 45.359). Both of the searches have O(1) time complexity, 

therefore the entire search operation has O(1) time complexity [6].  

Level 2 Hash 
Table Value

Level 2 Hash 
Table Key

Level 1 Hash 
Table Key

Function 
Prototype

(float, float) 
SearchIntersection(string)

YONGE ST

COLLEGE ST (-89.235, 45.359)

BLOOR ST (-89.237, 45.534)

COLLEGE ST YONGE ST (-89.235, 45.359). 



16 
 

3.1.2.3  Preprocessing of Data for Creation of Final Hash Table,  

Data Structure Perspective 
 

Several steps are required to efficiently preprocess the North America map database to create 

the final hash table structure described in section 3.1.2.2. 

Step 1: Create a temporary mapping between street intersection geographic coordinates and 

names of the streets intersecting at the location 

This mapping is essentially a temporary hash table where the keys are the geographic 

coordinates, and the values are the name of the streets intersecting at the location. All the 

street segment entries in the map database are iterated through. The start and end coordinates 

of the street segment are extracted. Both the start and end coordinates will be added to the 

hash table as keys if non-exist. The corresponding values are array-like structures that contain 

the name of the streets at this location. 

This preprocessing step is relatively computationally efficient. Each entry in the original map 

data only needs to be accessed once, and only the start and end street coordinates need to be 

retrieved to be used as the keys of the temporary hash table. Accessing the key location and 

adding the new street name to the list are also O(1) operations. Therefore, the overall time 

complexity of this step is O(n) [6]. 

 

Step 2: Merge the temporary mapping created for each map segment 

The North American street information does not come from a single large file.  There are 177 

files representing different types of Highway and Street information in 44 regions (some regions 

may not have certain types of highway or street) [22]. In step 1, each of the files has been 

processed separately. Merging of the files is necessary because some street intersections may 

be missed if the files are not combined with each other. For example, geographical coordinate 

GC1 may exist in both temporary hash table A and B (from step 1). 

 



17 
 

 

 Key Value 

Hash Table A GC1 [H ST, X ST] 

Hash Table B GC1 [K RD, X ST] 

Merged Hash Table GC1 [H ST, X ST, K RD] 
 

Table 3. Data Entries in Individual Hash Tables and Merged Hash Table 

 

Without merging hash table A and B together, the fact that at GC1, H ST and K RD are 

intersecting cannot be directly retrieved. The situation that one street intersection exists in two 

files occurs when: the street intersection is an intersection between different street types, or 

the intersection is at the border between two regions. 

During the preprocessing, it is observed that only 0.71% of street intersections exist in more 

than one file. The street name list is usually less than 4 because 5- or 6- way intersections 

hardly exists. Therefore, the actual merging of the street name list does not have a big impact 

on the overall time complexity. During the creation of the merged mapping, each key in the 

temporary mapping will be checked for existence in the merged mapping through an O(1) hash 

table search operation. If the key exists, the corresponding street name list will be updated, 

otherwise, a new entry will be added to the merged mapping. Since searching and storing in a 

hash table are both O(1) operations, the overall time complexity of this step is O(n). 

 

Step 3: Create the final hash table structure described in section 3.1.2.2. 

Using the geographical coordinate to street name hash table generated in step 2, the final on-

disk hash table that maps a street name to its intersecting streets can be created. Iterate 

through hash table from step 2, for example, if one of the entry has the following structure: 

Key: GC1; Value: [H ST, X ST, K RD] 

“H ST” is intersecting with both “X ST” and “K RD” at GC1. Each street is intersecting with both 

of the rest. As a result, we can create or add to the following entries in the final hash table: 



18 
 

 

 
Figure 3. Structure of Final Hash Table in a Network with 1 Intersection and 3 Streets 
Intersecting 

 

Creation of the final hash table has average time complexity 𝑂(𝑛 × 𝑏!), where n is the number 

of street segments and b is the average number of streets at each intersection. In actual road 

networks, most of the intersections are 4-way or 3-way intersections, higher way intersections 

hardly exist. It is reasonable to treat 𝑂(𝑛 × 4!) = 𝑂(24𝑛) = 𝑂(𝑛) as the average time 

complexity. 

When a search term is given, for example “X ST and H ST”, the intersection’s geographical 

coordinate can be found first using “X ST” as the key for the Level 1 hash table and retrieve the 

corresponding Level 2 hash table, and then use “H ST” as the key to retrieve the geographical 

coordinate from the Level 2 hash table. The search term “H ST and X ST” will generate the same 

result. 

  

Level 2 
Hash 
Table 
Value

Level 2 
Hash 
Table 
Key

Level 1 
Hash 
Table 
Key

Final on-disk 
hash table

H ST

X ST GC1

K RD GC1

X ST

H ST GC1

K RD GC1

K RD

X ST GC1

H ST GC1



19 
 

Summary: from a time complexity perspective, each of the step has 𝑂(𝑛) time complexity, and 

each of the steps can be separated. Therefore, the overall time complexity for preprocessing is 

𝑂(𝑛). Space wise, each step creates a constant amount of duplicate information compared to 

the input of the step. The input to each step can be deleted after successful creation of the 

output data. Therefore, the space complexity is also 𝑂(𝑛)  

 

The alternative naïve preprocessing procedure that is not efficient: 

Alternatively, one may attempt to create the final hash table directly by iterating through the 

data entries in the original database. However, this approach will result in 𝑂(𝑛2) time 

complexity because for every new street segment inserted, it needs to be compared to all 

existing entries to check if they meet at the same street intersection. 

 

3.1.2.4  Preprocessing of Data for Creation of Final Hash Table, Software Perspective 
 

In the following section, the software frameworks used to create and store the hash tables will 

be reviewed. Some of the speed-up techniques such as multiprocessing and memory 

conservation will be presented. 

 
 

Software Frameworks: 

 

QGIS 2.18 

To access street information stored in the North America map database, QGIS 2.18 APIs that 

are written in Python 2.7.14 is used [23]. At the time of this project, QGIS 2.18 has been the 

most recent stable release version. Python 2.7.14 is the corresponding version Supported. In 

particular, APIs from the QGIS VectorLayer Class is heavily used in step 1 of the preprocessing to 

access street names and street coordinates of the street segments. 

 
 

  



20 
 

Python Dictionary for Python 2.7.14 

The Python dictionary is the built-in hash table implementation in Python [24]. It has all the 

components of a hash table implementation: a hash function, bucket of arrays for storage and 

mechanism for collisions. The built-in Python hash function has been reported to be very 

efficient at avoiding key collisions. The built-in hash function works with other Python built-in 

immutable objects. In this project, keys of the hash tables have been selected to be standard 

Python built-in objects. Geographical coordinates are represented as a tuple of floats. Street 

names are represented as strings. 

 

Python Pickle Module for Python 2.7.14 

The development laptop used has 8GB of memory, which is not enough to handle all the 

information required for preprocessing at once. Python Pickle Module is a module for storing 

Python objects in files [25]. Python objects can be saved in pickle files in their binary form, 

allowing fast storage and data restoration. Theoretically, if the computer used has enough 

memory, all the preprocessing can be done without saving any information in files. However, 

due to memory constraints, simultaneously keeping both North America map database files 

that contain street information and the created temporary geographical coordinate to street 

name hash tables in memory is not possible. The result of preprocessing in step 1 is saved in 

Python Pickle files. By storing the processed information in files, information from unprocessed 

map database files are being loaded into the memory, while memory used by processed 

database files and already created hash tables can be freed. The processing can continue 

without using the hard drive as memory swap space. 

 

Python Shelve Module for Python 2.7.14 

Python Shelve is a module that saves Python dictionaries on-disk [26]. Values of the dictionary 

entries can also be accessed using the key without loading the entire dictionary into memory. 

Python shelve module has been used twice in the creation of the final on-disk hash table. It is 

used to 



21 
 

i. Temporarily store the results of step 2 

Unlike results of step 1, where the temporary hash table of corresponding to each 

file can be stored separately. Result of step 2, the merged hash table, needs to be 

stored as one piece of information. Storing it as one hash table is technically not 

possible given only 8GB of memory. Therefore, the merged result is saved directly 

on disk by calling the sync() function from the Shelve module, which basically flushes 

data in memory onto disk and allows data in memory to be freed when memory is 

no longer available. 

ii. Permanently store the final on-disk hash table 

Information stored in the result of step 2 is accessed using the Shelve module read 

methods to be loaded into memory. After processing as described in step 3. The final 

hash table is stored on-disk as a Shelve object. 

 

Python Multiprocessing Module for Python 2.7.14 

The Python Multiprocessing Module is used to speed up step 1 of preprocessing [27]. 

Processing information in North America map files after loading them is a CPU-bound task. By 

default, each Python process runs on a single CPU core. Most modern CPUs, including the one 

used in this project, have multi-cores. The pool() function from the multiprocessing module is 

used to ensure there is the same number of processes running as the number of CPU-cores. As 

a result, all CPU-cores are in full usage and expensive context switches (which switches CPUs 

onto a different process). 

 

  



22 
 

3.2 Ambiguous Search Algorithm Implementation 
 

In order to improve the success rate of street intersection search in North America map 

database, we implemented an ambiguous search algorithm that is optimized using the 

reference street names in the database. 

 

3.2.1 Street Name Cleaning 
 

First, the street names are preprocessed so that they become more standard without losing 

critical information. The cleaning includes: 

i. Change street names to their upper case 

ii. Remove periods ‘.’ in the street names 

 

3.2.2 Street Name Bank 
 

During preprocessing of the hash table for street intersection search, a reference street name 

bank that includes all street names is created. Street name and street type are not separated. 

For example, “YONGE ST” is recorded as one street name, instead of being recorded separately 

as “YONGE” and “ST”.  

 

3.2.3 Standard Ambiguous Search Transformations 
 

We define a set of standard transformations of an input search word adapted from the 

spellmaster open source project. Instead of using the full alphabet [a-zA-Z], the union of [A-Z] 

and [- ] (dash “-“, and space “ ”) is used as the set for our transformation letters (trans-letters). 

The list of standard transformations is below: 

i. Insertion: insertion of a trans-letter between each of two letters in the input 

ii. Deletion: deletion of a letter from the input 

iii. Substitution: substitution of a letter in the input with a trans-letter 

iv. Swap: swap of adjacent letters in the input 



23 
 

 

Variant Type Examples 

Insertion AHWY ONE, H WY ONE 

Deletion HY ONE, HWYONE 

Substitution AWY ONE, A-Y ONE 

Swap WHY ONE, HW YONE 

Abbreviation HIGHWAY ONE 

Number Swap HWY 1 
 

Table 4. Examples of Results Using Standard Transformations on Input “HWY ONE” 

 

3.2.4         Street Name Special Ambiguous Search Transformations 
 

Street names can often have different close formats that have similar meanings. For example, 

“YONGE ST” can be written as “YONGE STREET” without substantial changes to its meaning. In 

addition, numbers written in their numerical and English form are often both valid. Therefore, 

there are two additional variations for street names: 

i. Abbreviation Substitute: Substitute an abbreviation with its full form, or vice versa 

ii. Number Substitute: Substitute a numerical number with its English form, or vice 

versa 

There are two reasons for which the street names are not cleaned to using only one form (such 

as only non-abbreviation and numerical form): 

i. To preserve as much meaning as the original form if possible. For example, some 

highways may be named H-201, and they are rarely expressed in their English form 

H-TWO-HUNDRED-AND-ONE 

ii. Some street names may contain standard street type tag in their name. For example, 

“View” is a standard street type that has an abbreviation “VW”. If a street is named 

“Oceanview St.”, the name becomes unrecognizable if it is renamed to “OceanVW 

St.”. 



24 
 

 

Variant Type Examples 

Abbreviation Substitute HIGHWAY ONE 

Number Substitute HWY 1 
 

Table 5. Examples of Results Using Street Name Special Transformations on Input “HWY ONE” 

 

3.2.5         Double Variation 
 

In order to improve the chance of successfully finding the word in the database, a set of double 

variation versions of the original input will be created and looked up if none of the words in the 

single variation set has been found in the database. For example, single variations of “HWY 

ONE” include [“HIGHWAY ONE”, “HWY 1”, “AWY ONE”, …], then double variations of “HWY 

ONE” include [“HIGHWAY OEN”, “HIGHWAY 1”, “WAY ONE”, …]. Calculation and lookup of 

double variations are very computationally inefficient, but is a handy brutal force method to 

increase the chance of successfully finding the intersection. 

  



25 
 

3.3.  Path Planning with Improved Intersection Considerations 

Implementation 
 

In the following section, analysis on drawbacks of using traditional road network graph 

representations will be provided first. We will then propose an alternative representation, and 

a corresponding algorithm that calculates the lowest cost path with this representation. We will 

also present how can the algorithm be used to apply turn restrictions and improve the safety of 

the vehicle. 

 

3.3.1         Disadvantages of Traditional Road Graph Network Representations 
 

A traditional road network graph representation treats street intersections as vertices and 

streets as edges. The representation has difficulties taking into account the following 

differences and costs that occur for vehicles on a road network [20]: 

(1)  Different Shortest Path Based on Vehicle’s Driving Direction 

 

 

Figure 4. Different Actual Shortest Path on Road Network Based on Vehicle Direction 

 

As shown in Figure 4, the vehicle may be at the same location, and is trying to reach the same 

destination. Depending on the vehicle’s driving direction, it will have completely different 

shortest paths to the destination. However, the vehicle’s driving direction cannot be modeled in 

a weighted undirected graph. As a result, the shortest path based on distance, which do not 

represent one that has the true lowest cost for the vehicle may be generated. 



26 
 

(2) Cost Associated with Waiting for Traffic Lights at Intersections 

 

 

Figure 5. Road Graph Network with Street Intersection as Vertices and Streets as Weighted 
Edges 

 

Most of the time, the absolute distance of intersection may be negligible compared to the 

length of the streets. For example, based on distance only, the cost of vertex A to vertex C may 

be calculated as 15 + 25 = 40. However, vehicles spend a significant amount of time waiting for 

traffic signals in an urban environment [20]In areas that do not contain traffic signals, vehicles 

still need to slow down in order to avoid potential oncoming or crossing traffics. 

If the cost of the path is defined as the expected amount of time a vehicle needs to spend on 

the path from source S to destination D, a typical road network representation that does not 

associate cost with vertices is not suitable for minimizing total travel time cost. 

(3) Cost and Potential Hazard Associated with Turns at Intersections 

Turning at intersections are costly for vehicles on the road, it has been reported that UPS trucks 

(almost) never turn left [28]. This has become an important strategy for the company to reduce 

collisions and cost. Vehicles turning left at intersections may need to spend longer time waiting 



27 
 

for Traffic Signal change. The driver may not be absolutely certain if there are oncoming traffics 

on the opposite side of the road as the view might be obscured by vehicles turning left from the 

other side. Pedestrians that are crossing streets also need to be watched as they have a higher 

priority of the road. These problems are also valid for autonomous vehicles. If an autonomous 

vehicle obeys traffic laws, yield to oncoming traffics that are going straight at the intersection, 

and is also more conservative (not moving during yellow traffic signals), the vehicle may have 

problems ever performing a left turn at intersections without dedicated left turn signals. 

Using the road network in Figure 5 again, if a left turn has a time cost of 5, and a right turn has a 

time cost of 2, the cost from A->C becomes 45, and the cost from C->A becomes 42. The cost of 

5 or 2 cannot be added to any single edge. The argument is equally valid if the cost is based on 

potential hazards of the path from source to destination. 

(4) Obeying One Way Roads and Turn Signals in Real Road Networks 

 

Figure 6. Road Network With Turn Restrictions 

 



28 
 

One way roads can be relatively easy to deal with if the road network is represented using 

weighted directed graph. For example, if B->C is a one-way road, in the graph representation, 

there should be a directed edge from B to C, and there shouldn’t exist a directed edge from C to 

B. However, modeling turn restrictions is particularly difficult. If B->C is a drivable path, driving 

straight from D to C is allowed, but turning left at intersection B is prohibited, it is hard to write 

concrete rules to prohibit a path that requires left turn at intersection B. 

One rule might be driving the path A->B->C is not allowed. However, in most path planning 

algorithms, such as Dijkstra’s Algorithm and A* Algorithm, a vertex will be fully explored when 

it has the lowest current cost among all vertices that have not been explored yet. At the time of 

attempting to fully explore vertex B, if its current parent is assigned as A, we have already lost 

the possibility to get to B from D and use D->B->C as part of the shortest path. 

 

3.3.2 Objectives 
 

In the following section, we will propose a combination of Graph Representation and Path 

Planning Algorithm that will produce the lowest cost path that has the following properties: 

(1) Models vehicle’s driving direction  

(2) Dynamic cost is allocated at intersections based on turn types and turn angles 

(3) Turn restrictions and one way rules are adhered 

(4) Optionally force the vehicle to enter road network by taking certain turns 

(5) Provide the vehicle with an executable turn-by-turn instruction 



29 
 

3.3.3 Graph Representation 
 

 

Figure 7. Road Graph Representation with Weighted Undirected Graph [15] 

 

 

Figure 8. Road Graph Representation with Weighted Symmetric Directed Graph [17] 

 

First, a weighted directed symmetric graph (defined in section 2.3.1) is created using the 

original undirected graph. Each vertex represents an intersection or a road end in the road 

network. Each edge represents one direction of a drivable path from one vertex to another. 

This representation requires preprocessing of the original graph. However, algorithms that 



30 
 

produce the shortest path satisfying properties in section 3.3.2 can also be created without 

preprocessing of the graph. Its implementation is not too different from the version with the 

preprocessed graph, the changes will be addressed in section 3.3.4.7. 

 

Formally, the procedure for preprocessing the graph is: 

Procedure Graph Preprocessing: Given a weighted undirected road network graph 𝐺 =  (𝑉, 𝐸), 

where each edge 𝑒𝑚,𝑚∈[0,𝑀) ∈ 𝐸 is associated with an unordered two element subset of Vertices 

(𝑣𝑛,𝑛∈[0,𝑁), 𝑣𝑛+1,𝑛+1∈[0,𝑁)), and has a weight 𝑊(𝑒𝑚,𝑚∈[0,𝑀)). For each 𝑒𝑚,𝑚∈[0,𝑀) ∈ 𝐸, replace 

𝑒𝑚,𝑚∈[0,𝑀) with its symmetric directed duals 𝑒2𝑚,2𝑚∈[0,2𝑀) and 𝑒2𝑚+1,2𝑚+1∈[0,2𝑀). The edge 

𝑒2𝑚,2𝑚∈[0,2𝑀) is associated with an ordered two element subset of vertices 

(𝑣𝑛,𝑛∈[0,𝑁), 𝑣𝑛+1,𝑛+1∈[0,𝑁)), and 𝑒2𝑚+1,2𝑚+1∈[0,2𝑀) is associated with an ordered two element 

subset of vertices (𝑣𝑛+1,𝑛+1∈[0,𝑁), 𝑣𝑛,𝑛∈[0,𝑁)). Weight of each of the directed dual is same as the 

original edge, i.e. 𝑊(𝑒𝑚,𝑚∈[0,𝑀)) =  𝑊(𝑒2𝑚,2𝑚∈[0,2𝑀)) =  𝑊(𝑒2𝑚+1,2𝑚+1∈[0,2𝑀)). 

 

3.3.4 Algorithm 
 

3.3.4.1 Pseudo Code Comparison with Dijkstra’s Algorithm 
 

This algorithm is adapted from Dijkstra’s Algorithm with a min-priority queue implementation 

[11]. As such, a side-to-side comparison between Dijkstra’s Algorithm and Path Planning with 

Improved Intersection Considerations Algorithm is presented, with their differences underlined 

and italicized. 

  



31 
 

Dijkstra’s Algorithm Path Planning with Improved Intersections Considerations Algorithm 

1  function Dijkstra(Graph, source): 

2      dist[source] ← 0 

3 

4      create min priority queue Q 

5 

6      for each vertex v in Graph:            

7          if v ≠ source 

8              dist[v] ← INFINITY    

9              prev[v] ← UNDEFINED 

10            explored[v] ← FALSE 

11         Q.add_with_priority(v, dist[v]) 

12 

13     while Q is not empty: 

14         u ← Q.extract_min() 

15         explored[u] ← TRUE                 

16         for each neighbor v of u if 

!explored[v]: 

17             alt ← dist[u] + weight(u, v) 

 

18             if alt < dist[v] 

19                 dist[v] ← alt 

20                 prev[v] ← u 

21                 Q.decrease_priority(v, alt) 

22 

23     return dist, prev 

 

1  function IntersectionImproved(Graph, source): 

2      dist[source] ← 0 

3 

4      create vertex set Q 

5 

6      for each vertex v in Graph:            

7          if v ≠ source 

8              dist[(v, from_edge, turn_type)] ← INFINITY 

9              prev[(v, from_edge, turn_type)] ← UNDEFINED 

10            explored[v, from_edge] ← FALSE 

11         Q.add_with_priority(v, dist[v], from_edge, turn_type) 

12 

13     while Q is not empty: 

14         u, dist[u], u_from_edge, turn_type ← Q.extract_min() 

15         explored[u, u_from_edge] ← TRUE                 

16         for each neighbor v and edge v_from_edge of u if 

!explored[v,from_edge]: 

17             alt ← dist[u,u_from_edge] + length(u,v) + 

turn_cost(v_from_edge, u_from_edge) 

18             if alt < dist[v, v_from_edge, turn_type] 

19                 dist[(v, from_edge, turn_type)] ← alt 

20                 prev[(v, from_edge, turn_type)] ← u 

21                 Q.decrease_priority(v, dist[v], from_edge, turn_type, alt) 

22 

23     return dist, prev 

 
 

Table 6. Pseudo Code Comparison Between Dijkstra's and Intersections Considerations 
Algorithm 

Underlined and italicized parts are the differences between Dijkstra’s Algorithm and the 

Intersection Improved Algorithm. The highlighted portions of Intersection Improved Algorithm 

are not the most accurate representation of the underlying data structure used to track the 

information. A detailed discussion of the underlying data structure will be presented in section 

3.3.5. Nevertheless, the pseudo code is a good representation of the main ideas of the 

algorithm. 



32 
 

The key difference between Intersection Improved Algorithm and the original Dijkstra’s 

Algorithm is the information tracked. In Dijkstra’s Algorithm, information about edges are used 

but quickly discarded. When operating a Dijkstra’s Algorithm on either a directed or undirected 

graph, only information related to vertices are being tracked. For example, in the “dist” array as 

shown in the Dijkstra’s Algorithm pseudo code, distance is only calculated and tracked based on 

the distance between the vertices. Once the distance is calculated, only the parent vertex is 

kept track in “prev” array. Information about the incoming edge is thrown away. At the same 

time, the relationship between edges (the need of left turn or right turn), as well as any cost 

that might incur at vertices (intersections) is completely ignored. As a result, from a Dijkstra’s 

Algorithm, the shortest path can be only generated based on the distance between vertices, 

and the shortest path only keeps track the vertices (intersections) on the path, which is hard to 

deduce a turn-by-turn driving instruction from. 

In contrary, Path Planning with Improved Intersection Considerations Algorithm keeps track of 

more information. The basic information unit in the algorithm is a vertex-edge pair. 

Definition Vertex-Edge Pair: Given a weighted symmetric directed graph 𝐺 =  (𝑉, 𝐸), a vertex-

edge pair is defined as (𝑣𝑛,𝑛∈[0,𝑁) ∈ 𝑉, 𝑒2𝑚,2𝑚∈[0,2𝑀) ∈ 𝐸), where 𝑒2𝑚,2𝑚∈[0,2𝑀) is associated 

with an ordered vertex set (𝑣𝑛−1,𝑛−1∈[0,𝑁), 𝑣𝑛,𝑛∈[0,𝑁)), 𝑁 is the total number of vertices and 𝑀 is 

the total number of directed edges. The vertex 𝑣𝑛,𝑛∈[0,𝑁) is the outgoing vertex of the edge 

𝑒2𝑚,2𝑚∈[0,2𝑀). 

  



33 
 

3.3.4.2 Algorithm in Detailed Steps 
 

In order to improve the clarity of the algorithm, turn_type will not be presented as part of the 

definitions. VE-pair stands for vertex-edge pair. SVE-pair stands for source vertex-edge pair. 

(1) Initialization 

Procedure Path Planning with Improved Intersection Considerations Initialization: Given a 

weighted symmetric directed graph 𝐺 =  (𝑉, 𝐸), to plan the lowest cost path from vertex 𝑆 ∈ 𝑉 

to vertex 𝐷 ∈ 𝑉, initialize by: 

For every vertex-edge pair (𝑣𝑛,𝑛∈[0,𝑁) ∈ 𝑉, 𝑒𝑚,𝑚∈[0,2𝑀) ∈ 𝐸), where 𝑒𝑚,𝑚∈[0,2𝑀) is associated 

with an ordered vertex set (𝑣𝑛−1,𝑛−1∈[0,𝑁), 𝑣𝑛,𝑛∈[0,𝑁)), and 𝑣𝑛,𝑛∈[0,𝑁) is the outgoing vertex of 

edge 𝑒𝑚,𝑚∈[0,2𝑀), assign: 

distance from SVE-pair to source vertex-edge pair: 𝐷((𝑆, 𝑒𝑁𝑈𝐿𝐿), (𝑆, 𝑒𝑁𝑈𝐿𝐿)) = 0 

parent of SVE-pair (𝑆, 𝑒𝑁𝑈𝐿𝐿) to (𝑆, 𝑒𝑁𝑈𝐿𝐿): 𝑃((𝑆, 𝑒𝑁𝑈𝐿𝐿)) = (𝑆, 𝑒𝑁𝑈𝐿𝐿) 

distance from SVE-pair (𝑆, 𝑒𝑁𝑈𝐿𝐿) to (𝑣𝑛, 𝑒𝑚) for all 𝑒𝑚,𝑚∈[0,2𝑀) ∈ 𝐸:   

   𝐷((𝑆, 𝑒𝑁𝑈𝐿𝐿), (𝑣𝑛, 𝑒𝑚)) = +𝐼𝑛𝑓 

parent of other VE-pair (𝑣𝑛, 𝑒𝑚) for all 𝑒𝑚,𝑚∈[0,2𝑀) ∈ 𝐸: 𝑃((𝑣𝑛, 𝑒𝑚)) = (𝑣𝑁𝑈𝐿𝐿 , 𝑒𝑁𝑈𝐿𝐿) 

Min Priority Queue: 𝑄{[(𝐷((𝑆, 𝑒𝑁𝑈𝐿𝐿), (𝑆, 𝑒𝑁𝑈𝐿𝐿)), (𝑆, 𝑒𝑁𝑈𝐿𝐿)]} 

exploration Status for all of VE-pair: EXPLORED{(𝑆, 𝑒𝑁𝑈𝐿𝐿)} = False 

 

Distances to all other vertex-edge pairs are marked as Infinity (Line 8). Through software 

optimization discussed in section 3.3.5, one does not have to go through all edges leading to 

each vertex. Correspondingly, the parent of each vertex-edge pair is another vertex-edge pair, 

which is marked as undefined for all vertex-edge pairs except for the parent vertex (Line 9). 

Upon initialization, all turn_types will be NULL, and will only be updated during calculation of 

the shortest path.  



34 
 

(2) Cost of Path Calculation 

Definition Path: In a weighted symmetric directed graph G =  (V, E), a path from vertex-edge 

pair (𝑣0, 𝑒0) to another vertex-edge pair (𝑣𝑘, 𝑒𝑘) exists if there is a sequence: 

𝑃 = < (𝑣0, 𝑒0) , (𝑣1, 𝑒1), (𝑣2, 𝑒2), … (𝑣𝑘, 𝑒𝑘) > 

Such that 𝑒𝑖 is associated with the an ordered two element subset of vertices (𝑣𝑖−1, 𝑒𝑖) for 𝑖 ∈

[1, 𝑘), and 𝑒0 is associated with (𝑣𝑎𝑛𝑦, 𝑣0). 

 

Definition Path Cost: In a weighted symmetric directed graph G =  (V, E), cost of path from 

vertex-edge pair (𝑣0, 𝑒0) to another vertex-edge pair (𝑣𝑘, 𝑒𝑘) is: 

𝐷(𝑃) =  ∑ 𝑊(𝑣𝑖, 𝑣𝑖+1)

𝑘−1

𝑖=1

+ ∑ 𝑇𝑢𝑟𝑛𝐶𝑜𝑠𝑡(𝑒𝑖, 𝑒𝑖+1)

𝑘−1

𝑖=1

 

                      For a given path :  𝑃 = < (𝑣0, 𝑒0) , (𝑣1, 𝑒1), (𝑣2, 𝑒2), … (𝑣𝑘, 𝑒𝑘) > 

                      Where: 𝑊(𝑣𝑖, 𝑣𝑖+1) is weight of the edge associated with the ordered set (𝑣𝑖, 𝑣𝑖+1) 

                                   𝑇𝑢𝑟𝑛𝐶𝑜𝑠𝑡(𝑒𝑖, 𝑒𝑖+1) is the cost incurred transitioning from  𝑒𝑖 to 𝑒𝑖+1. 

 

A different cost of path is the core of this algorithm. The algorithm not only considers cost 

incurred on edges (streets), but it also considers cost incurred at vertices (intersections). As 

shown in Line 17 of the pseudo code, a temporary cost to the vertex-edge pair (𝑣, 𝑒𝑡𝑜_𝑣) is 

calculated using the distance from source S to (𝑢, 𝑒𝑡𝑜_𝑢), distance of 𝑢 → 𝑣 (which is same as 

 𝑊(𝑒𝑡𝑜_𝑣)), as well as the turn cost based on relationships between 𝑒𝑡𝑜_𝑢 and 𝑒𝑡𝑜_𝑣. Turn cost 

should be higher if the turn is more difficult to execute for a vehicle. Therefore, a U-Turn will 

have the highest cost, followed by a Left-Turn and a Right-Turn. Turn cost can also be penalized 

by the size of the angle: the sharper the angle, the higher the cost. 

  

  



35 
 

(3) Update Distance array, Parent Array and Min Priority Queue 

Definition Distance Update Condition: 

An update condition is True if, in a weighted symmetric directed graph G =  (V, E), for a vertex-

edge pair (𝑣𝑘, 𝑒𝑘), there exists a path from source vertex-edge pair 𝑃𝑛𝑒𝑤 = <

(𝑆, 𝑒𝑁𝑈𝐿𝐿), … (𝑣𝑘, 𝑒𝑘) > for which 𝐷(𝑃𝑛𝑒𝑤) < 𝐷(𝑃𝑜𝑙𝑑) 

Where 𝑃𝑜𝑙𝑑  = < (𝑆, 𝑒𝑁𝑈𝐿𝐿), … (𝑣𝑘, 𝑒𝑘) > is the previously discovered shortest path. 

 

Procedure Distance Update: In a weighted symmetric directed graph G =  (V, E), for a vertex-

edge pair (𝑣𝑘, 𝑒𝑘), upon discovery of a new path                                                                                                       

𝑃𝑛𝑒𝑤 = < (𝑆, 𝑒𝑁𝑈𝐿𝐿), … , (𝑣𝑘−1, 𝑒𝑘−1), (𝑣𝑘, 𝑒𝑘) >  and “Distance Update Condition” is True, 

update the following for (𝑣𝑘, 𝑒𝑘): 

Parent of VE-pair (𝑣𝑘, 𝑒𝑘): 𝑃((𝑣𝑘, 𝑒𝑘)) =  (𝑣𝑘−1, 𝑒𝑘−1) 

Distance from SVE-pair (𝑆, 𝑒𝑁𝑈𝐿𝐿) to (𝑣𝑘, 𝑒𝑘): 𝐷((𝑆, 𝑒𝑁𝑈𝐿𝐿), (𝑣𝑘, 𝑒𝑘)) = 𝐷(𝑃𝑛𝑒𝑤) 

Min Priority Queue: 𝑄. 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑟𝑖𝑜𝑟𝑖𝑡𝑦(𝐷(𝑃𝑛𝑒𝑤), (𝑣𝑘, 𝑒𝑘)) 

 

The min priority queue is still ordered based on the cost from source S to the vertex-edge pair, 

which is in this algorithm based on a combination of cost of the edges and cost of the turns. 

Distances to vertex-edge pairs, as well as the parent of vertex-edge pairs, will be recorded. 

During calculation of turn_cost, the turn type needs to be identified. The turn type calculated 

will be recorded as turn_type in the main function. This information is not required for finding 

the shortest path based on edge and turn cost, but is required for generating turn-by-turn 

driving instruction for the vehicle. 

 

  



36 
 

(4) Exploration of New Vertex 

Procedure Exploration of New Vertex: A vertex (𝑣𝑘, 𝑒𝑘) will be explored if Min Priority Queue 

𝑄. 𝑡𝑜𝑝 =  (𝑣𝑘, 𝑒𝑘). During exploration, do: 

1. For all edges 𝑒𝑘+𝑖  that is associated with an ordered vertex set (𝑣𝑘, 𝑣𝑘+𝑖), if 

𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷(𝑣𝑘+𝑖, 𝑒𝑘+𝑖) is False, and (𝑣𝑘+𝑖, 𝑒𝑘+𝑖) has Update Condition True, then 

Update (𝑣𝑘+𝑖, 𝑒𝑘+𝑖). 

2. 𝐸𝑋𝑃𝐿𝑂𝑅𝐸𝐷(𝑣𝑘, 𝑒𝑘) = True 

3. 𝑄. 𝑟𝑒𝑚𝑜𝑣𝑒_𝑡𝑜𝑝() 

 

  



37 
 

3.3.4.3 Calculation of Turn Cost 
 

Cost of Turn Type: 

In order to calculation turn cost, the relationship between 𝑒𝑡𝑜_𝑢 and 𝑒𝑡𝑜_𝑣 has to be identified. 

Definition CCW Angle Between Two Edges. For a pair of edges 𝑒𝑡𝑜_𝑢 ∈ 𝐸 and 𝑒𝑡𝑜_𝑣 ∈ 𝐸, where 

𝑒𝑡𝑜_𝑣 is the directed edge from vertex 𝑢 to vertex 𝑣, and 𝑒𝑡𝑜_𝑢 is the directed edge from another 

arbitrary vertex 𝑡 to vertex 𝑢. The counterclockwise angle between 𝑒𝑡𝑜_𝑢 and 𝑒𝑡𝑜_𝑣 is given by: 

𝐶𝐶𝑊(𝑒𝑡𝑜_𝑢,𝑒𝑡𝑜_𝑣) = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑣𝑦 − 𝑢𝑦, 𝑣𝑥 − 𝑢𝑥) −  𝑎𝑟𝑐𝑡𝑎𝑛2(𝑡𝑦 − 𝑢𝑦, 𝑡𝑥 − 𝑢𝑥) 

where the function 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑦, 𝑥) gives the polar angle of the point (𝑥, 𝑦).  

If 𝐶𝐶𝑊(𝑒𝑡𝑜_𝑢,𝑒𝑡𝑜_𝑣) < 0, then 𝐶𝐶𝑊(𝑒𝑡𝑜_𝑢,𝑒𝑡𝑜_𝑣) = 𝐶𝐶𝑊(𝑒𝑡𝑜_𝑢,𝑒𝑡𝑜_𝑣) + 360°,                                                                

so that 𝐶𝐶𝑊(𝑒𝑡𝑜_𝑢,𝑒𝑡𝑜_𝑣)  ∈ [0°, 360°). 

 

 

 

Figure 9. Polar Angle Between Edges in Graph 

 

  



38 
 

For example, in Figure 9, 𝐶𝐶𝑊(𝑒1, 𝑒7) =  𝜃1 = 90°, and 𝐶𝐶𝑊(𝑒1, 𝑒3) =  𝜃2 = 270° angle. 

𝐶𝐶𝑊(𝑒1, 𝑒2) is defined as the counterclockwise angle from edge 𝑒1 to edge 𝑒2. In the case of 

non-straight streets (edges), the street is represented as a list of geographical coordinates. The 

geographical coordinate that is the closest to the intersection (but not at the intersection) will 

be chosen to calculate the angles. 

The relationship between turn type and value of CCW angle is shown in the following table: 

Turn Type Example Criteria 1 Example Criteria 2 Example Cost 

Right Ɵ ∈  [10°, 170°) Ɵ ∈ (0°, 160°) 2 

Straight Ɵ ∈  [170°, 190°) Ɵ ∈  [160°, 200°) 0 

Left Ɵ ∈  [190°, 340°) Ɵ ∈  [200°, 340°) 5 

U-Turn Ɵ ∈  [0°, 10°) ∪ [340°, 360°) Ɵ ∈  [340°, 360°) 10 
 

Table 7. Turn Type Along with Example Criteria and Cost 

 

 

 

Figure 10. Example Turn Classification on a Real Road Network 



39 
 

There are several variabilities with the Turn type and their associated cost. First, the range of 

the crossing intersections straight can be variable. In “Example Criteria 2”, intersection crosses 

with up to  20° angle is categorized as crossing straight, where in “Example Criteria 1”, only 10° 

variation from heading straight is allowed. In addition, the definition of U-Turn can vary. On 

North American roads, it might be suitable to define a super sharp left turn as a U-Turn. 

However, in a road system where vehicles drive on the left side of the road, it might be more 

appropriate to define a super sharp right turn as a U-Turn. The cost associated with each type 

of turn can also be variable, so that penalizing certain behaviors can be easy. For example, on a 

road network that is relatively chaotic and does not have dedicated left turn signals, left turns 

should be penalized. On a road network that involves a lot of bicycles, right turns should be 

penalized, as right-turning vehicles need to yield the right-of-way to cyclists going straight and 

they may potentially hard to detect. 

Cost of Angle Acuteness: 

Angle cost should be following the rule that the smaller the angle, the higher the cost. The 

angle 𝜑 ∈ [0°, 180°) between two edges 𝑒1 and 𝑒2, 𝜑(𝑒1, 𝑒2), can be calculated from 

𝐶𝐶𝑊(𝑒1, 𝑒2) using the following formula: 

𝜑(𝑒1, 𝑒2) = 𝑎𝑏𝑠(180° −  𝐶𝐶𝑊(𝑒1, 𝑒2)) 

A cost associated with acuteness of the angle can be given by: 

𝜑𝑐𝑜𝑠𝑡(𝑒1, 𝑒2) =
180°

𝜑(𝑒1, 𝑒2)
− 1 

 Where 𝜑(𝑒1, 𝑒2) is expressed in degrees. 

 

Dynamical Cost Based on Turn Type and Angle Acuteness: 

The magnitude of turn type penalization and angle acuteness penalization can be dynamically 

adjusted: 

𝑡𝑜𝑡𝑎𝑙_𝑡𝑢𝑟𝑛_𝑐𝑜𝑠𝑡 = 𝛼 × 𝑡𝑢𝑟𝑛_𝑡𝑦𝑝𝑒_𝑐𝑜𝑠𝑡(𝑒1, 𝑒2) +  𝛽 × 𝜑𝑐𝑜𝑠𝑡(𝑒1, 𝑒2) 



40 
 

Turn Type for Turn-by-Turn Driving Instructions: 

Turn type is found during calculation of the turn cost. This information can be tracked in the 

parent array in the main function. When a turn-by-turn driving instruction is needed, turn 

instructions can be found using the turn type stored.  

3.3.4.4 Path Planning with Improved Intersection Considerations Lowest Cost Path Format 
Through the tracking of extra information, a final path based on either on-path vertices or 

edges, or a combination of both can be proposed.  

 

Figure 11. Weighted Undirected Graph and Weighted Symmetric Directed Graph 

 Dijkstra’s Algorithm Road Graph with Intersection Considerations 

Cost from A -> C W(D1) + W(D2) W(E1) + TurnCost(E1->E3) + W(E3) 

Final Path from 

A -> C 
[A, B, C] 

[(A, NULL, NULL), 

(B, from E1, NULL), 

(C,  from E3, left turn)] 

Turn by Turn 

instruction 

based on Final 

Path 

A -?-> B -?-> C 

A 

Continue on E1 (to reach B) 

Turn left onto E3 (to reach C) 

Your destination has arrived 

Table 8. Comparison with Dijkstra’s Algorithm on Cost, Planned Path and Turn-by-Turn 
Instruction 



41 
 

Table 8 compares the information retrieved from Dijkstra’s Algorithm and Road Graph with 

Intersection Considerations. Both attempting to find a path from Intersection A to Intersection 

C, Dijkstra’s Algorithm gives a solution (Final Path) based on vertices: [A, B, C]. Road Graph with 

Intersection Considerations give a list of three element set information, from which one can 

deduce the vertices on the path: [A, B, C], all the edges on the path (with optional turn 

instructions): [E1, (turn left), E2].  

 

3.3.4.5  Applying Turn Restrictions and One Way Road Restrictions 
 

Turn restrictions can be easily recorded using edges. Using graph in Figure 11 as an example, 

given the following constraints: 

(1) At intersection B, turning left from A into C it not allowed,  

                                turning right from A into E is not allowed 

(2) At intersection B, going straight from E to C is not allowed 

 

Figure 12. Hash Table Structure, Turn Restriction Based on Edges 

List of Restricted 
Outgoing Edge 

Value

Incoming Edge 
Key

Restriction 
Based on Edge

Turn Restrition 
Hash Table

E1 [E3, E7]

E8 [E3]



42 
 

Turn restrictions can be easily stored in a hash table, the lookup time for any incoming edge key 

is 𝑂(1). Searching through the restricted outgoing edge is 𝑂(𝑘), where k is the size of the list. 

However, since 5-way or above intersections hardly exist, in practice, k is often less than 3, 

keeping the actual lookup time low.  

 

Figure 13. Hash Table Structure, Turn Restriction Based on Ordered Vertex Set Dual 

 

This dual form is useful if one does not want to preprocess the map. Details of processing on 

the fly will be discussed in section 3.3.4.7. This turn restriction representation has same time 

complexity as the previous representation. 

One Way Road Restrictions: 

One way restrictions can be modeled in two ways: deletion of a directed edge or a set of turn 

restriction that forbids the use of the directed edge. 

Using map in Figure 11 as an example, if traveling from intersection D to B is one way only (E5 is 

banned), the corresponding turn restrictions are: 

List of Restricted 
Outhing Ordered 
Vertex Set Value

Incoming Ordered 
Vertex Set

Restriction Based 
on 

Ordered Vertex Set

Turn Restrction 
Hash Table

(A, B) [(B, C), (B, E)]

(E, B) (B, C)



43 
 

 

Figure 14. Hash Table Structure, One Way Road Restriction 

 

3.3.4.6 Safe Driving Consideration: Force the Vehicle to Turn Right onto the Road 

Network, and Turn Right into the Destination 
 

Vehicles often drive onto the road network from garages or parking spots that are not marked 

as part of the road network. When driving onto the road network, it is often safer and easier to 

drive right onto the road network as only one side of the crossing traffic needs to be watched. 

In order to force the vehicle to turn right onto the road network, how to move the vehicle onto 

the road network will be defined first. 

Procedure Off-Graph Start: Given a weighted symmetric directed graph 𝐺 =  (𝑉, 𝐸) and a 

vehicle starting geographical location 𝐺𝐶𝑠𝑡𝑎𝑟𝑡, if 𝐺𝐶𝑠𝑡𝑎𝑟𝑡 ≠ 𝑣𝑚. 𝐺𝐶() for all 𝑣𝑚 ∈ 𝑉, then create 

a new graph 𝐺′ =  (𝑉′, 𝐸′)  

Where  𝑉 ∪ (𝑣𝑠𝑡𝑎𝑟𝑡, 𝑣𝑒𝑑𝑔𝑒) = 𝑉′  

𝐸 ∪ (𝑒𝑠𝑡𝑎𝑟𝑡, (𝑣𝑒𝑑𝑔𝑒 , 𝑣𝑖), (𝑣𝑒𝑑𝑔𝑒 , 𝑣𝑖+1)) = 𝐸′,  

such that 𝑣𝑠𝑡𝑎𝑟𝑡 . 𝐺𝐶() =  𝐺𝐶𝑠𝑡𝑎𝑟𝑡 

List of Restricted 
Outgoing Edge 

Value

Incoming Edge 
Key

One Way Rd 
Restrction Based 

on Edge

One Way 
Restriction 
Hash Table

E1 [E5]

E4 [E5]

E8 [E5]



44 
 

     𝑒𝑠𝑡𝑎𝑟𝑡 = (𝑣𝑠𝑡𝑎𝑟𝑡 , 𝑣𝑒𝑑𝑔𝑒)  

                                               𝑣𝑒𝑑𝑔𝑒 . 𝐺𝐶() is the closes point to 𝐺𝐶𝑠𝑡𝑎𝑟𝑡  for all point on any edges.  

For a vehicle to depart off-road, two new vertices and three new edges need to be added to the 

graph. If the vehicle is forced to take a direction at the beginning, the restriction can be simply 

added to the restriction hash table in section 3.3.4.4. 

  

3.3.4.7 Road Graph with Improved Intersection without Preprocessing of the Graph 
 

In section 3.3.3, we defined how to create a weighted directed symmetric graph from the 

original weighted undirected graph. Algorithms in the section 3.3.3 are based on this graph 

representation. However, it is equally valid run the Road Graph with Intersection 

Considerations algorithm on the original graph. The key differences are: 

(1) Replace Directed Edge with Ordered-Vertex-Set 

Definition Ordered-vertex-set: Given a directed edge 𝑒 from vertex 𝑣1 to 𝑣2, edge e is 

associated with the ordered-vertex-set (𝑣1, 𝑣2). 

(2) Replace Vertex-Edge Pair (VE-pair) with Vertex-Ordered-Vertex-Set Pair (VO-Pair)  

Definition Vertex-Ordered-vertex-set Pair: Given a weighted undirected graph 𝐺 =

 (𝑉, 𝐸), a vertex-edge pair is defined as (𝑣𝑛,𝑛∈[0,𝑁) ∈ 𝑉, 𝑜𝑟𝑑𝑒𝑟𝑒𝑑(𝑣𝑛−1,𝑛−1∈[0,𝑁) ∈

𝑉, 𝑣𝑛,𝑛∈[0,𝑁) ∈ 𝑉)), where 𝑒𝑚,𝑚∈[0,𝑀) ∈ 𝐸 is associated with the unordered version of the 

vertex set (𝑣𝑛−1,𝑛−1∈[0,𝑁) ∈ 𝑉, 𝑣𝑛,𝑛∈[0,𝑁) ∈ 𝑉) . The vertex 𝑣𝑛,𝑛∈[0,𝑁) is the outgoing vertex of 

the vertex set (𝑣𝑛−1,𝑛−1∈[0,𝑁), 𝑣𝑛,𝑛∈[0,𝑁)). 

Using these two replacements, one can perform rest of the algorithm on-the-fly using ordered-

vertex-sets instead of directed edges, and using VO-Pairs instead of VE-pairs. The algorithm will 

be syntactically more difficult to present but will not require extra computation. 

 



45 
 

3.3.5 Software Optimizations 
 

In the algorithm initialization procedure presented in section 3.3.4.2, the steps for initializing 

the distance and parent arrays are: 

1. Initialize distance from SVE-pair (𝑆, 𝑒𝑁𝑈𝐿𝐿) to (𝑣𝑛, 𝑒𝑚) for all 𝑒𝑚,𝑚∈[0,2𝑀) ∈ 𝐸: 

𝐷((𝑆, 𝑒𝑁𝑈𝐿𝐿), (𝑣𝑛, 𝑒𝑚)) = +𝐼𝑛𝑓 

2. Initialize parent of VE-pair (𝑣𝑛, 𝑒𝑚) for all 𝑒𝑚,𝑚∈[0,2𝑀) ∈ 𝐸: 𝑃((𝑣𝑛, 𝑒𝑚)) = (𝑣𝑁𝑈𝐿𝐿 , 𝑒𝑁𝑈𝐿𝐿) 

Initializing the distance to all other VE-pair to infinity, and parent of all other VE-pairs to be 

NULL requires going through all edges and identifying all VE-pairs, which is not necessary. 

Instead, this information can be updated on-the-fly as new VE-pairs are discovered. 

 

For Road Graph with Improved Intersection Algorithm, parent and distance are 2d arrays. Upon 

initialization, only the primary dimension based on the number of vertices in the graph is 

created. The secondary dimension that is based on the number of VE-pairs associated with each 

vertex will be dynamically created on the fly. This can be accomplished by using a Python List of 

List structure, where the inner List is mutable, allowing extra information to be recorded if 

needed [24].  

Distance: 

 𝑣1 ∈ 𝑉 𝑣2 ∈ 𝑉 … 𝑣𝑖 ∈ 𝑉 … 𝑣𝑛 ∈ 𝑉 

𝑒𝑖1 ∈ 𝐸 0 
𝑫(𝑷 < (𝒗𝟏, 𝒆𝟏𝟏), 

(𝒗𝟐, 𝒆𝟐𝟏) >) 
 

𝑫(𝑷 < (𝒗𝟏, 𝒆𝟏𝟏), 

(𝒗𝒊, 𝒆𝒊𝟏) >) 
 

𝑫(𝑷 < (𝒗𝟏, 𝒆𝟏𝟏), 

(𝒗𝒊, 𝒆𝒊𝟏), (𝒗𝒏, 𝒆𝒏𝟏) >) 

𝑒𝑖2 ∈ 𝐸  
𝑫(𝑷 < (𝒗𝟏, 𝒆𝟏𝟏), 

(𝒗𝒊, 𝒆𝒊𝟏), (𝒗𝟐, 𝒆𝟐𝟐) >) 
    

…       

𝑒𝑖𝑗 ∈ 𝐸       

…       
 

Table 9. 2D Array Represent of Distance 



46 
 

Parent: 

 𝑣1 ∈ 𝑉 𝑣2 ∈ 𝑉 … 𝑣𝑖 ∈ 𝑉 … 𝑣𝑛 ∈ 𝑉 

𝑒𝑖1

∈ 𝐸 

(𝑣1, 𝑒11),  

𝑡𝑢𝑟𝑛𝑛𝑢𝑙𝑙 

(𝒗𝟏, 𝒆𝟏𝟏), 

𝒕𝒖𝒓𝒏(𝒆𝟏𝟏, 𝒆𝟐𝟏) 
 

(𝒗𝟏, 𝒆𝟏𝟏), 

𝒕𝒖𝒓𝒏(𝒆𝟏𝟏, 𝒆𝒊𝟏) 
 

(𝒗𝒊, 𝒆𝒊𝟏),   

𝒕𝒖𝒓𝒏(𝒆𝒊𝟏, 𝒆𝒏𝟏) 

𝑒𝑖2

∈ 𝐸 
 

(𝒗𝒊, 𝒆𝒊𝟏), 

𝒕𝒖𝒓𝒏(𝒆𝒊𝟏, 𝒆𝟐𝟐) 
    

…       

𝑒𝑖𝑗

∈ 𝐸 
      

…       
 

Table 10. 2D Array Representation of Parent, including Turn Types 

 

An Example with Two Iterations of the Algorithm: 

Assume 𝑣1 is the source vertex, and its neighbors are 𝑣2 and 𝑣𝑖, at initialization, distance and 

parent for entry (𝑣1, 𝑒11) is updated, where 𝑒𝑖1 = 𝑁𝑈𝐿𝐿. 

In the first iteration of the algorithm, distances and parents of a VE-pair associated with 𝑣2, and 

a VE-pair associated with 𝑣𝑖  can be updated, shown in bold in Table 9 and 10. 

At second iteration, assume 𝑣𝑖  has the lowest cost, the neighbor of 𝑣𝑖: 𝑣2 and 𝑣𝑛 are both 

updated. For 𝑣2, another VE-pair that has not been discovered before will be added into the 2d 

array. The updates are shown in bold and underline in Table 9 and 10. 

Path to any of the discovered VE-pair can be deduced easily by going through the Parent 2d 

array. For example, in order to reach (𝑣2, 𝑒22), one starts from (𝑣2, 𝑒22), observe its parent is 

(𝑣𝑖, 𝑒𝑖1), which in turn has parent (𝑣1, 𝑒11), i.e. the source VE-pair. 

Reverse this observation, the path can be constructed, 

𝑃 = < (𝑣1, 𝑒11), (𝑣𝑖 , 𝑒𝑖1), (𝑣2, 𝑒22) > 



47 
 

and the turn instructions can also be included 

𝑃𝑡𝑢𝑟𝑛−𝑏𝑦−𝑡𝑢𝑟𝑛 = < (𝑣1, 𝑒11), 𝑡𝑢𝑟𝑛(𝑒11, 𝑒𝑖1), (𝑣𝑖, 𝑒𝑖1), 𝑡𝑢𝑟𝑛(𝑒𝑖1, 𝑒22), (𝑣2, 𝑒22) > 

 

3.3.6 Heuristic Optimization 
 

Heuristics can be used to optimize the average performance of the algorithm [12]. In the min 

priority queue Q, instead of ordering the vertices using actual cost from source vertex S, the 

vertices can be ordered using a total estimated cost from source to destination, which is 

defined below 

Definition Estimated Total Path Cost: In a weighted symmetric directed graph G =  (V, E), the 

total estimated cost of path from source vertex-edge pair (𝑆, 𝑒𝑁𝑈𝐿𝐿) to one of the destination 

vertex-edge pair (𝐷 ∈ 𝑉, 𝑒𝑚,𝑚∈[0,2𝑀) ∈ 𝐸) via a vertex-edge pair (𝑣𝑘, 𝑒𝑘) is: 

𝐷(𝑃) =  ∑ 𝑊(𝑣𝑖, 𝑣𝑖+1)

𝑘−1

𝑖=1

+ ∑ 𝑇𝑢𝑟𝑛𝐶𝑜𝑠𝑡(𝑒𝑖, 𝑒𝑖+1)

𝑘−1

𝑖=1

+ 𝐻((𝑣𝑘, 𝑒𝑘), (𝐷, 𝑒𝑚)) 

                      For a given actual path :  𝑃 = < (𝑣0, 𝑒0) , (𝑣1, 𝑒1), (𝑣2, 𝑒2), … (𝑣𝑘, 𝑒𝑘) > 

                      Where: (𝑣0, 𝑒0) = (𝑆, 𝑒𝑁𝑈𝐿𝐿) 

           𝐻((𝑣𝑘, 𝑒𝑘), (𝐷, 𝑒𝑚)) estimates the cost from (𝑣𝑘, 𝑒𝑘) to (𝐷, 𝑒𝑚) 

         𝑊(𝑣𝑖 , 𝑣𝑖+1) is weight of the edge associated with the ordered set (𝑣𝑖 , 𝑣𝑖+1) 

                                     𝑇𝑢𝑟𝑛𝐶𝑜𝑠𝑡(𝑒𝑖, 𝑒𝑖+1) is the cost incurred transitioning from  𝑒𝑖 to 𝑒𝑖+1. 

 

This heuristic, if admissible, will guarantee the correctness of the solution if it always 

underestimates the cost of the actual path. An admissible heuristic is one that always 

underestimates the actual cost from one VE-pair to another. In our algorithm, a heuristic using 

the straight line distance between two vertices are always admissible, as the cost to get from 

one VE-pair to another will at least be the straight line distance. 



48 
 

4 Result 
 

The following result is generated on a laptop with AMD 18-4500M APU without using the 

integrated card for acceleration. The memory on board are 2x4096MB DDR3 800MHz 

memories. Hard drive has 1TB capacity with 5400RPM. The system is not nearly competitive 

with other high-performance devices released in 2018. Using the latest devices should result in 

a significant performance improvement. 

 

4.1         Location Searching Performance Evaluation 

 

Figure 15. Intersection Location Search Time for 100 Random Intersections 

To evaluate the performance of searching of intersections using the on-disk hash table, one 

hundred existing intersections has been selected. To clear the potential cache of data in 



49 
 

memory, the device has been rebooted before performing the test. It can be seen that 

searching for an intersection in the entire North American database has been very fast through 

a clever design of the data structure. The average time of search is around 0.5s. 

Since the PostgreSQL implementation is not done on the device, a head to head comparison of 

performance is not very possible. However, on a faster device, the PostgreSQL implementation 

searches for a street intersection usually in between 4 and 10 seconds, which is significantly 

slower than the on-disk hash table implementation. 

 

  



50 
 

4.2         Path Planning with Improved Intersection Considerations 

Performance Evaluation 
 

In the following section, we will look into the difference between several paths proposed by 

Dijkstra’s and Road Graph with Intersection Considerations. We will also present their 

difference in runtime on a large amount of random starting and ending locations. 

4.2.1         Comparison of Path Planned 
 

The following paths are planned from coordinate (110.74374W, 62.40692N), to (110.70546W, 

62.3656N), on map data provided by SAE International. 

 

Figure 16. Path Planned from Start to End using Dijkstra’s Algorithm 

 

Figure 17. Path Planned from Start to End using Road Path using Road Graph with Intersection 
Considerations 



51 
 

As seen from the figures, Dijkstra’s algorithm will produce a path that involves 4 close to 90° 

turns: two right turns and two left turns. Road Graph with Intersection Considerations 

algorithm chooses a route with a slightly longer total distance, but only includes two close to 

90° turns: right turn at intersection 0, and left turn at intersection 4. The ‘turn’ at intersection 3 

has been classified as cross straight in the algorithm. 

 

4.2.2         Safe Driving Consideration: Path Planned with Right Turn onto Road 

Network 
 

 

Figure 18. Vehicle forced to turn right onto the road network, and forced to turn right into the 
destination 

Another improvement is shown in the above figure, using Road Graph with Intersection 

Considerations Algorithm, the vehicle can be easily forced to turn right onto the road network 

at the beginning. Compare Figure 18 and Figure 17, it can be seen that the vehicle is taking a 

much safer route by turning right onto the road. And it is only performing 90° turns at 3 

intersections, which is still less in the number of turns compared to the path proposed by 

Dijkstra’s Algorithm. 

  



52 
 

4.2.3         Turn-by-Turn Instruction 
 

 

Figure 19. Turn-by-Turn Instruction Auto Generated from Algorithm 

 

As shown in Figure 19, the Vehicle is forced to turn left onto Klondike Hwy, and turn left into 

the destination. The turn-by-turn instruction is naturally generated using information about 

turn types that have previously computed. After proper merging of the turn instructions (such 

as removing unnecessary continue straight when there is no street name change), a concise 

executable turn-by-turn instruction can be provided to the autonomous vehicle. 

 

4.2.3         Algorithm Speed and Benefit Comparison on Real Road Networks 
 

One hundred random starting and ending geographical coordinates have been selected in the 

Greater Toronto Area (GTA) [29]. On the map database provided by SAE International, four 

algorithms have been running to generate the shortest path between these locations. There 

was no requirement on the starting turn type. There was no angle penalization. A left turn is 

penalized the same as a 40-meter regular street (with speed limit 40km/h). Each right turn has 

the same cost as a 15-meter regular street. Each U-turn is equivalent to a 100-meter regular 

street in terms of cost. A straight crossing of intersections is not penalized. The result is shown 

in the graph below: 

Turn Left onto Klondike Hwy 

Turn Right onto Albert St. 
Slide Right onto Albert St. 
Continue Straight onto 6th Ave 

Turn Right onto York St. 
Turn LEFT onto YOUR DESTINATION 



53 
 

 

Figure 20. Comparison of Run Time and Properties of Proposed Shortest Path for Different 
Algorithms 

 

Note that the number of left turns is computed offline: computed after Dijkstra’s Algorithm and 

A* Algorithm has proposed its shortest path. Therefore, counting of the number of left turns 

does not have an impact on the runtime of Dijkstra’s Algorithm and A* Algorithm. 

Road Graph with Intersection Considerations Algorithms takes longer to run than Dijkstra’s 

Algorithm. The conclusion is the same between the heuristic version of the two algorithms. The 

advantage of Intersection Considerations is a significantly lower amount of turns in the 

proposed final path. On average, there are only half of the turns compared to Dijkstra’s 

Algorithm. The total distance of the path is very similar, with Intersection Considerations 

Algorithm proposing slightly longer paths. 

As expected, the heuristic versions and non-heuristic versions for both types of algorithms are 

generating the same result. Which means heuristic only helped improving efficiency, without 

compromising optimality of the solution. A* almost reduced the runtime of Dijkstra’s Algorithm 

by half, which is a much more significant improvement than using heuristics on Road Graph 

with Intersection Considerations Algorithm. The reason is Intersection Considerations is using 



54 
 

the same heuristic (straight line distance). However, the actual cost in Intersection 

Considerations is larger than that in Dijkstra’s due to the extra turn costs. As a result, there is a 

larger gap between the straight line cost estimation and the actual cost, resulting in a less 

efficient heuristics algorithm. 

  



55 
 

5 Summary 
 

In this thesis, a fast street intersection search using hash-table technique has been proposed 

and implemented. On average, it takes only 0.5 seconds to search for a street intersection in 

the entire North America map database. Its performance has been compared with searching 

using traditional SQL database queries, where an improvement on the order of 102 has been 

seen. A search blur algorithm that helps improving the chance of retrieving search results has 

been proposed and implemented. For road path planning, the Road Graph with Improved 

Intersection Considerations Algorithm has been proposed to incorporate cost incurred at 

intersections in real road networks without the need for preprocessing of the map. The 

algorithm can automatically generate executable turn-by-turn instructions. Using real Toronto 

map data, it is shown that the algorithm is successful at reducing the number of turns required 

in the proposed path by about half, without significantly increasing the total distance of the 

path or the computation time required.  

  



56 
 

References 
 

[1]  "AutoDrive Challenge," SAE International, [Online]. Available: 

https://www.sae.org/attend/student-events/autodrive-challenge/. [Accessed 09 04 2018]. 

[2]  SAE International, "Taxonomy and Definitions for Terms Related to On-Road Motor Vehicle 

Automated Driving Systems," 16 01 2014. [Online]. Available: 

https://saemobilus.sae.org/content/j3016_201401. [Accessed 09 04 2018]. 

[3]  "SAE AutoDrive Challenge Competition Guide," SAE International, 2017. 

[4]  H. F. K. S. S. Avi Silberschatz, Database System Concepts, McGraw-Hill, 2010.  

[5]  J. D. G. F. Kai Hwang, Distributed and Cloud Computing, 2011.  

[6]  M. T. Goodrich, Data Structures and Algorithms in Python, 2016.  

[7]  P. V. Dooren, "Graph Theory and Applications," 2009. [Online]. Available: 

http://www.hamilton.ie/ollie/Downloads/Graph.pdf. [Accessed 09 04 2017]. 

[8]  F. Blöchliger, "Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps".  

[9]  P. S. D. S. D. D. Robert Geisberger, "Contraction Hierarchies: Faster and Simpler Hierarchical 

Routing in Road Networks," C.C. McGeoch (Ed.): WEA 2008, LNCS 5038, pp. 3-9-333, 2008.  

[10]  "Topological Sort," [Online]. Available: 

http://www.cs.utoronto.ca/~tabrown/csc263/2014W/week9.pdf. [Accessed 09 04 2017]. 

[11]  M. L. Fredman and R. E. Tarjan, "Fibonacci heaps and their uses in improved network optimization 

algorithms," in 25th Annual Symposium on Foundations of Computer Science. IEEE, 1984.  

[12]  P. E. N. N. J. R. B. Hart, "A Formal Basis for the Heuristic Determination of Minimum Cost Paths," 

IEEE Transactions on Systems Science and Cybernetics, p. 100–107, 1968.  

[13]  B. H. G. Y. C. G. E. Casey Whitelaw, "Using the Web for Language Independent Spellchecking and," 

2009. [Online]. Available: 

http://static.googleusercontent.com/media/research.google.com/en/us/pubs/archive/36180.pdf. 

[Accessed 09 04 2018]. 

[14]  P. Norvig, "Write a Spelling Corrector," 08 2016. [Online]. Available: https://norvig.com/spell-

correct.html. [Accessed 09 04 2018]. 

[15]  Princeton Computer Science, "Undirected Graphs," [Online]. Available: 

https://www.cs.princeton.edu/~rs/AlgsDS07/11UndirectedGraphs.pdf. [Accessed 11 04 2018]. 



57 
 

[16]  Princeton Computer Science, "Directed Graphs," [Online]. Available: 

https://www.cs.princeton.edu/~rs/AlgsDS07/13DirectedGraphs.pdf. [Accessed 09 04 2018]. 

[17]  Stanford Computer Science, "Graphs and Relations," [Online]. Available: 

https://web.stanford.edu/class/archive/cs/cs103/cs103.1132/lectures/05/Small05.pdf. [Accessed 

09 04 2018]. 

[18]  NIST, "shortest path," [Online]. Available: https://xlinux.nist.gov/dads/HTML/shortestpath.html. 

[Accessed 09 04 2018]. 

[19]  S. Sawlani, "Explaining the Performance of Bidirectional," [Online]. Available: 

https://digitalcommons.du.edu/cgi/viewcontent.cgi?article=2303&context=etd. [Accessed 09 04 

2018]. 

[20]  A. G. Stephan Winter, "Modeling Costs of Turns in Route Planning," [Online]. Available: 

https://pdfs.semanticscholar.org/a735/e1cd1b724932b1844d5b21038d287967a59f.pdf. 

[Accessed 09 04 2018]. 

[21]  "PostgreSQL 10.3 Released!," PostgreSQL, [Online]. Available: https://www.postgresql.org/. 

[Accessed 09 04 2018]. 

[22]  SAE International, "Mapping Challenge Map Database". 

[23]  "QGIS A Free and Open Source Geographic Information System," QGIS, [Online]. Available: 

https://www.qgis.org/en/site/. [Accessed 09 04 2018]. 

[24]  "Python Data Structures," Python, [Online]. Available: 

https://docs.python.org/2/tutorial/datastructures.html. [Accessed 09 04 2018]. 

[25]  "11.1. pickle — Python object serialization," Python, [Online]. Available: 

https://docs.python.org/2/library/pickle.html. [Accessed 09 04 2017]. 

[26]  "11.4. shelve — Python object persistence," Python, [Online]. Available: 

https://docs.python.org/2/library/shelve.html. [Accessed 09 04 2018]. 

[27]  "16.6. multiprocessing — Process-based “threading” interface," Python, [Online]. Available: 

https://docs.python.org/2/library/multiprocessing.html. [Accessed 09 04 2018]. 

[28]  "Why UPS trucks (almost) never turn left," CNN, 23 02 2017. [Online]. Available: 

https://www.cnn.com/2017/02/16/world/ups-trucks-no-left-turns/index.html. [Accessed 09 04 

2018]. 

[29]  "TORONTO NEIGHBOURHOOD GUIDE," [Online]. Available: 

http://www.torontoneighbourhoods.net/suburbs. [Accessed 09 04 2017]. 

 

 


